Test 1 (WSC, 4:30 PM to 5:20 PM)
e Coverage
+ Lecture materials (slides, notes, example code)
up to and including Monday, October 20
+ Tutorials 1 to 4
+ Assignment 1
e Format
+ Programming Part (Eclipse):
* Import a Java starter project (like Al)
* Implement Java classes/methods to pass test cases
+ Written Part (eClass):
* Primarily MCQs
* Written questions (e.g., short answers, justifications, proofs)

Graph Traversals: Adapting DFS

Efficient Traversal of Graph G:

Graph Questions:
e Fina a path between {u, v} c V

e Is v reachable from v

¢ Find all connected components of G.

e Compute a spanning tree of a connected G.
e Is G connected?

e If G is cyclic, return a cycle.

Graph Traversal: Breadth-First Search (BFS) (A)

A breadth-first search (BFS) of graph G = (V, E),

starting from some vertex v € V:

o Visits every vertex adjacent to v before visiting any other
(more distant) vertices

e BFS attempts to stay as close as possible,
whereas DFS attempts to move as far as possible

e BFS proceeds in rounds and divides the vertices into levels
o No backtracking in BFS: it is completed as soon as the

most distant level of vertices from the start vertex v are visited.

Q. What data structure should be used to
keep track of the visited nodes?

Breadth-First Search (BFS): Marking Vertices & Edges

Before the BFS starts:

¢ All vertices are unvisited.

e All edges are unexplored/unmarked.

Over the course of a BFS, we mark vertices and edges:

e A vertex is marked visited when it is first encountered.
e Then, we iterate through each of v's incident edges, say e:

o If edge e is already marked, then skip it.
o Otherwise, for an _undirected graph, an edge is marked as:
o A discovery edge if it leads to an unvisited vertex
e A cross edge if it leads to a visited vertex
(i.e., from a different branch at the same level).

Breadth-First Search (BFS): Example 1 (a)

Assumptions:

e Adjacent vertices visited in alphabetic order

Breadth-First Search (BFS): Example 1 (b)

Assumptions:
® Adjacent vertices visited in alphabetic order
e Exception: Edge AC visited first

Breadth-First Search (BFS): Example 1 (c)

Assumptions:

® Adjacent vertices visited in alphabetic order
e Exception: Edge AD visited first

Graph Traversals: Adapting BFS

Efficient Traversal of Graph G:
Graph Questions:

e Fina a path between {u, v} C V

e Is v reachable from v

e Find all connected components of G.

e Compute a spanning tree of a connected G.
e Is G connected?

e If G is cyclic, return a cycle.

Big-O Properties (1): Members in a Family

Each member f(n) in O(g(n)) is such that:

O(n)

Higest Power of f(n) <= Highest Power of g(n)

O(n?)

Functions: Rates of Growth

1044
104() -

1036
1032 -

1028

— 1024
~— 1020

10]6_

1012
108 -
104 -
100 =

100

10!

\

L

43

102

1 T T T
103 10* 105 10°

107

n

T
108

A — ———"—"
- r

LI T L
10° 10' 10" 10'2 103 10' 10"

—ae— Exponential
—o— Cubic
—&— (Quadratic
—— N-Log-N
—— Linear
—a— Logarithmic

—— Constant

Big-O Properties (2): Relating Families

Big-O Properties (3): Deciding Correct & Accurate Bound

